12072 Olivine Basalt 103.6 grams Figure 1: Photo of 12072. Sample is 5.5 cm. NASA # S69-61750. #### **Introduction** Olivine basalt 12072 is rounded and covered by micrometeorite craters on all sides (figure 1). It has numerous vugs and vesicles and has been used in the past for public display. 12072 has not been dated. #### **Petrography** The petrology of 12072 is discussed by Beaty et al. (1979) and Neal et al. (1994). Olivine, chromite and pyroxene phenocrysts are set in a variolitic groundmass of pyroxene, plagioclase, ilmenite and minor spinel, troilite, cristobalite, Fe-metal, apatite, fayalite and two immiscible glasses (Beaty et al. 1979). Olivine phenocrysts are rimmed by pyroxene and include chromite octahedra. Pyroxenes have colorless pigeonite cores rimmed with pinkish augite which grades continuously into Fe-rich groundmass pyroxene (figure 2). While Beaty et al. concluded that 12072 was a feldspathic basalt, the analyses by Neal et al. showed that it belonged to the grouping known as olivine basalt (identical mode?). ### **Mineralogy** *Olivine:* Olivine is Fo_{76} to Fo_{62} (Beaty et al. 1979). # **Mineralogical Mode of 12072** | mineralogical mode of 12072 | | | | | | |-----------------------------|----------|----------|--|--|--| | | Beaty et | Neal et | | | | | | al. 1979 | al. 1994 | | | | | Olivine | 5.7 | 5.7 | | | | | Pyroxene | 49 | 49 | | | | | Plagioclase | 39 | 38.9 | | | | | Ilmenite | 1.1 | 1.4 | | | | | Chromite ' | 0.3 | 0.2 | | | | | Mesostasis | 1.1 | 1.4 | | | | | "silica" | | 3.1 | | | | Figure 2: Texture of 12072.. Scale is 0.5 mm. Figure 2e from Neal et al. (1994). **Pyroxene:** Beaty et al. (1979) determined the composition of pyroxene (figure 3). Pyroxenes zone continuously to pyroxferroite (no discontinuity). **Plagioclase:** Plagioclase is An_{96} to An_{85} (Beaty et al. 1979). *Metallic Iron:* Small iron grains are found in the mesostasis (figure 4). # **Chemistry** Chemical analysis by ICP-MS (Snyder et al. 1997) seem to agree with those by INAA (Neal et al. 1994). However, a calculated analysis for major elements by Beaty et al. (1979) was not as mafic (table 1). # Radiogenic age dating Not dated. #### **Other Studies** Bogard et al. (1971) reported the content and isotopic composition of rare gases in 12072. # **Processing** 12072 (whole piece) was once used as a public display, and has since been demounted, and re-entered into the collection. Figure 3: Pyroxene composition for 12072 (adapted loosely from Beaty et al. 1979, Neal et al. 1994). Figure 4: Composition of iron grain in Apollo 12 basalts (from Neal et al. 1994). #### List of Photo #s for 12072 S69-61740 – 61763 B & W mug S94-035807 – 035808 color S94-035811 Figure 5: Normalized rare-earth-element composition for 12072 (data from Neal et al. 1994). Figure 6: Composition of 12072 compared with that of other lunar samples. Table 1. Chemical composition of 12072. | reference | Neal94 | 4 Beaty79 | | Snyder97 | | | |--|--|--|--------|---|--------------------------|--| | weight
SiO2 %
TiO2
Al2O3
FeO
MnO
MgO
CaO
Na2O
K2O
P2O5
S %
sum | .618 g
3
8.5
21.3
0.262
13.3
8.7
0.227
0.059 | 48.14 (a) 1.81 (a) 11.64 (a) 17.46 (a) 0.25 (a) 8.57 (a) 11.38 (a) 0.37 (a) 0.04 0.06 0.16 | (b) | 3
8.5
21.3
0.26
13.3
8.7
0.23
0.06 | | | | Sc ppm
V
Cr
Co
Ni
Cu
Zn
Ga
Ge ppb
As
Se
Rb
Sr
Y
Zr
Nb
Mo
Ru | 47.1
165
3760
50.5
54 | (a)
(a)
(a) 2737
(a)
(a) | | 3820
48.2
55.5
8.86
8.14
2.85 | (c)
(c)
(c)
(c) | | | | | | | 0.883
75.13
30.7
95.9
5.36 | (c)
(c)
(c)
(c) | | | Rh Pd ppb Ag ppb Cd ppb In ppb Sn ppb Sb ppb | | | | 107 | (c) | | | La Ge Ce Pr Nd Sm 4 Eu Gd Tb | 56
6.2
17.7 | (a)
(a)
(a) | | 0.047
51.2
6.23
17
2.22 | (c)
(c)
(c) | | | | 11.6
4.2
0.96 | (a)
(a)
(a) | | 11
4.01
0.85
3.91 | (c)
(c)
(c)
(c) | | | | 1.07
6.6 | (a)
(a) | | 0.74
4.52
0.97
2.66
0.37 | (c)
(c)
(c)
(c) | | | Yb
Lu
Hf | 3.6
0.5
3 | (a)
(a)
(a) | | 2.63
0.33 | (c) | | | Ta W ppb Re ppb Os ppb Ir ppb Pt ppb Au ppb | 0.43 | (a) | | 0.244 | (c) | | | Th ppm
U ppm | 0.77 | (a) | nal va | 0.726
0.164 | (C)
(C) | | | tecnnique: | (a) INAA | A, (b) modal an | aiys | is, (c) IC | r-IVIS | |